
Introduction to Unix and the X Window System

Scott D. Anderson∗

Wellesley College
Scott.Anderson@acm.org

c© Fall 2012

1 Overview

UnixTM is an old and venerable operating system that
has also managed to grow with the times. It currently
runs on almost any kind of computer, from PC hard-
ware to big mainframes and supercomputers. Well
worth learning, for any computer scientist.
The X Window System is a graphical user interface

(GUI) that runs on most Unix machines. It has some
nice advantages over a Microsoft Windows or Apple
Macintosh GUI, primarily in being able to run over
networks. Again, this is well worth learning. Indeed,
a computer scientist with any breadth of knowledge
would be expected to understand Unix and the XWin-
dow System. (The latter is often abbreviated to “X11”
or just “X.”)
There is too much about both of these topics for me

to do more than scratch the surface. My goal is just
to give you enough to get started and be able to run
a few simple commands, write simple programs, and
learn more.

2 Unix and Linux

Linux is an operating system that was intended to (1)
work just like Unix, and (2) run on inexpensive IBM
PC hardware (the Intel 80x86 family of chips and the
PC clones). It technically isn’t Unix because “Unix” is
a trademarked name,1 but you won’t find any practi-
cal differences. In practice, the word “Unix” is an um-
brella term that covers many variations on the Unix
idea, including Linux.
Because Linux runs on PC hardware, it becomes a

viable alternative to Windows NT, 95, 98, 2000, ME,
XP and Vista. There are also versions of Linux that
run on Macintosh hardware, so it becomes an alter-
native to the Macintosh operating system. Further-

∗Thanks to LeeAnn Tzeng for helpful comments and to Agnes
Ampadu for resurrecting this document that I feared was lost for-
ever.

1Unix is a trademark of AT&T Bell Laboratories.

more, the standard OS on the Macintosh, called OS
X (and pronounced “oh ess ten”) has a Unix-like core
(in fact based on Open BSD, not Linux). However, the
impact of Linux has been much greater in the server
market than the desktop market, primarily because of
its speed and reliability: Linux servers run 24/7 for
months without needing to be rebooted.
Linux is also part of the Open Source movement,

which means different vendors and volunteer devel-
opers share source code and build on each other’s
work. Thus, you can buy Linux from many different
companies, or even download it for free.
The Wellesley CS department runs Linux (CentOS

6.3 as of this writing) on about 36 desktop computers
in labs and offices. What I describe here runs on those
computers, although almost everything runs on any
version of Unix.

3 Logging In

When you come to a Linuxmachine, say “Wren” (most
of our department machines bear animal names), there
will be a login screen. You type your login name (typ-
ically the same as your Wellesley domain username)
and your password. People may call this your “Puma”
password, but in fact the same password works for
all the machines. Your password doesn’t have to
be the same as your domain password and probably
shouldn’t be.
By default, our Linux machines run software called

the “X Window System.” This means that when you
login, you’ll get a graphical user interface that looks
vaguely like Microsoft Windows or the Macintosh.
There’s a bar along the side called “the panel.” At
one end the panel is a blue icon with a stylized F on
it; this is the Fedora icon. It’s analogous to the “Start”
button on MS Windows, and you can access many ap-
plications and configuration options from that place.
There are other icons on the panel as well, analogous
to the “dock” on the Macintosh. These icons are for
applications that the nice folks at Red Hat (CentOS is
the free equivalent of their server software) consider

1



“standard.” However, you can add and remove ap-
plications from the dock. There is also a little 2 × 2

thing called the “workspace switcher,” that allows you
to easily switch among four different virtual desktops.
If you right-click on the desktop, you’ll get a quick

menu, one item of which is “new terminal.” That lets
you start up a “shell.”

4 Shell Commands

Back in the olden days, when you logged into a com-
puter, there were no windows, and you typed com-
mands to a “command line interface” and results were
typed back to you (or put into files). You still get that
when you login remotely using SSH. Unix still bears
that legacy, and the place where you type commands
is called “the shell.” (It’s called the shell in contrast
to “the kernel,” which is the core of the operating sys-
tem; the shell is a command line interface to the ker-
nel.) Nowadays, each shell runs in a window and you
can have as many shell windows as you like.
The shell promptsyou for input and responds to your

commands. You can customize your prompt. Here at
Wellesley, we’ve defined it to be your username and
host (machine name) and the name of the directory
you are in. If I’m logged into Wren and I’m in my
public_html directory, my prompt would look like:

[anderson@wren public_html]

In this document, however, I will pretend that the
prompt is a percent sign, just for the sake of brevity.
Don’t type the percent sign in the examples below. The
percent sign just marks the stuff you can type.
Here are a few of the shell commands that people

use every day:

ls This prints a listing of all the files in a directory
(called “folders” in other operating systems). By
default, it lists the files in the current directory, but
with a command-line argument, it lists the files in
the directories named on the command line..

pwd Prints the complete name of the current working
directory; in other words, what the current direc-
tory is.

mkdir This creates a new directory, contained in the
current one. That is, the new directory is a sub-
directory.

cd This changes your current directory. In other
words, it moves you from one place to another,
like changing your location.

cp This copies a file from one place to another.

mv This moves a file from one place to another (or one
name to another). You can rename a file by using
mv.

rm This removes (deletes) a file. Warning: you can’t
get it back again!

rmdir This removes (deletes) a directory, but only if
it’s empty.

Now, let’s see these in action. See if you understand
what is happening at each step here. Afterward, I’ll go
over them and interpret. Here’s a session by Wendy
Wellesley:

% ls
HelloWorld.class public_html
HelloWorld.java read-only
% pwd
/students/wwellesl
% cd public_html
% pwd
/students/wwellesl/public_html
% ls
% mkdir newdir
% ls
newdir
% cd newdir
% pwd
/students/wwellesl/public_html/newdir
% cd ..
% rmdir newdir
% cd
% pwd
/students/wwellesl
% ls -1a
.
..
.bash_profile
.bashrc
.emacs
HelloWorld.class
HelloWorld.java
.kde
.login
.profile
public_html
read-only
% cp .profile dot-profile
% ls
dot-profile public_html
HelloWorld.class read-only
HelloWorld.java
% mv dot-profile renamed-file
% ls
HelloWorld.class read-only
HelloWorld.java renamed-file

2



public_html
% rm renamed-file

The first ls shows that we have two things in our
current directory. The pwd shows us that the current
directory is /students/wwellesl . It happens that
public_html is a directory within our current direc-
tory, so we can cd into it. The pwd shows that the
cd command worked. The second ls shows that the
public_html directory is empty. We make a sub-
directory (called newdir ) and use ls to check that it
exists. We can cd to it, as the pwd confirms. The Unix
file structure is a tree, just like all computers, with the
directories in a path separated by slashes (MS Win-
dows uses backslashes and Mac OSX uses colons).
The cd.. changes to the directory above the current

one. (The “..” is a special name for the parent direc-
tory.) This brings us back to our public_html first
directory. The ls newdir shows that ls can be fol-
lowed by a directory name, to list the contents of that
other directory. Since newdir is empty (we just cre-
ated it, after all), we can use rmdir to remove it. You
can’t use rmdir on non-empty directories.
The bare cd command changes to the original direc-

tory, also called the “home” directory. We confirm this
with pwd. We then do an ls -al and discover that
there are additional, invisible files in our home direc-
tory. The -a option to ls means to show all files. Usu-
ally, ls hides any files whose name begins with a dot.
The -1 (digit 1) option means to give a listing in one
column, which I did just for convenience in this docu-
ment; in real life, -1 is rarely used. However, -l (the
letter “l,” for a “long” listing) is often used and gives a
lot more information about each file.
We can use cp to copy one of these files, use mv to

rename (or move) the copy to a new name, and finally
use rm to delete the copy.

5 Successfully Copying a File

One stumbling block for many students is copying a
file; you’re used to graphical user interfaces, where
you click and drag. The principles are the same
though: specifying the source file(s) and destination
folder in a hierarchical file system.
For concreteness, let’s create a few directories and

a file and then play around with moving that file
around. Here’s the setup:

% cd
% mkdir foo
% mkdir bar
% touch foo/a.java

The cd command gets you to your home directory.
The next two mkdir commands create two subdirec-

tories. Finally, the touch command creates a new,
empty file named a.java in the foo subdirectory.
Now, there are actually fourways to specify that file.

1. /students/wwellesl/foo/a.java , which is
an absolute pathname. An absolute pathname starts
with a slash, meaning the root of the directory
tree, and names each directory as it goes down the
tree.

2. foo/a.java , which is a relative pathname. That
means it starts from the current working directory
(see pwd) and then names directories as it moves
down. It can also move up, using .. , the name
for the parent directory of any directory. In this
setup, we are in our home directory, /students/
wwellesl , so this pathname is equivalent to the
first one.

3. ˜ wwellesl/foo/a.java , which uses the tilde
followed by a username. In Unix, the tilde looks
up the home directory of someone (in a kind
of database) and uses that as the starting loca-
tion. Here, we’d look up the home directory
of wwellesl , discover that it is /students/
wwellesl and continue from there. So this is
equivalent to the first two.

4. ˜ /foo/a.java , which uses a tilde followed by a
slash. That means the home directory of the per-
son who is logged in. Since we’re logged in as
wwellesl , this is the same as the previous ones.

Try the following commands, and see if they make
sense. Confirm that they worked by using ls . Substi-
tute your own username for the wwellesl .

% mv foo/a.java bar/
% mv ˜/bar/a.java /students/wwellesl/foo/
% cd foo
% mv a.java ../bar/
% mv ../bar/a.java ˜/foo
% mv a.java ˜wwellesl/bar

Often, you’re asked to copy something from a
course account to your own directory, so try this:

% cp ˜cs304/public_html/index.html ˜/foo/
% rm ˜/foo/index.html

To delete both of these directories and their contents,
do the following. The -r means recursive, so a mistake
can delete every file you own. Be careful!

% cd
% rm -r foo/ bar/

6 Creating/Editing Files

Having seen how to rename and remove files, how do
we create them in the first place? This is done with

3



an “editor,” which is any program that allows you to
change the contents of a file. One of the two standard
editors in Unix is Emacs. (The other is vi .) I’ve writ-
ten a separate document introducing Emacs, so I will
describe it even more briefly here.
There are quite a few ways to start Emacs, depend-

ing on what effects you want. I’ll just tell you just a
few.

• If you’re physically at the machine, called using
the console, go to the main menu, go to the “Ac-
cessories” menu and select Emacs. That starts up
a new window running Emacs. You can use the
mouse to switch back and forth between any shell
windows and your Emacs window.

• If you’re logged in remotely via ssh, and you’re
on a Unix machine running X or running the X11
terminal under Mac OS X, you can start up a new
window running Emacs by typing its name as a
command, followed by an ampersand.

% emacs &

• If you’re logged in remotely via ssh, but you’re not
on a machine running X11 (say you’re on a Win-
dows machine connecting to Unix via Putty), so
you only have a single shell and no desktop, you
can run Emacs by typing its name as a command:

% emacs

In Emacs, you can move around using the arrow
keys, and you can type stuff into your file. You can
save the file with a particular name using the “C-x C-
w” command (hold down the “control” key while typ-
ing “x” then “w”). This is what other programs call
“Save As.” To just save a file you’re working on, with-
out specifying a name, type “C-x C-s.” You can also
access these commands via the “Files” menu.
I highly recommend running the Emacs tutorial. To

start the tutorial, type “C-h t,” which means to hold
down the control key while typing “h,” then release
the control key and type a “t.”
Note: a single Emacs can edit any number of files,

so unless you have a good reason to, it’s not neces-
sary to start up multiple Emacs applications, and it
will just slow down your machine unnecessarily. In-
stead, switch among different Emacs buffers.

7 Logging Out

When you’re done with a Linux machine, don’t just
walk away. You must log out so that others can use the
machine. If you’re at the console, there is a menu item
in the Fedora menu for logging out, or you can use the

icon on the panel. The icon isn’t easy to describe, but if
you put your mouse over any icon, a balloon will pop
up to give a text description, and you can find it easily
enough. If you’re logged in via ssh, you should use the
logout command:

% logout

8 Learning More

To learn more about a particular Unix command, the
best source is the online manual. For example, to learn
more about the ls command, type:

% man ls

Warning: The “man” pages are reference material,
not tutorials or easy reading, whichmeans they can get
a little dense sometimes, so skim them at first reading,
and go back for more when you’ve swallowed that.
Reading man pages is another skill that is well worth
acquiring, because software changes, and even experi-
enced computer scientists check the man pages regu-
larly.
To learnmore about Emacs, use the built-in help sys-

tem. Try “C-h i” to start up the “info” pages, and then
learn about that. Emacs is enormous, so don’t try to
learn too much at once. Start with the basics, then
gradually add new things.
A web search will turn up tutorials for Unix, Linux

and Emacs.
If you think of any important information or advice

to add to this primer, please let me know.

4


